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Abstract 

For a given gauge group and compact Riemannian two-manifold, it is known that the associ- 
ated Yang-Mills measure can be defined directly as a finitely additive measure on the space of 
connections, and this finitely additive measure is invariant with respect to SDif‘f, the group of 
all area-preserving diffeomorphisms of the surface. The first question we address is whether this 
symmetry essentially characterizes the projection of the Yang-Mills measure to the space of gauge 
equivalence classes. The proper formulation of this question entails the construction of an S Di,f,f- 
equivariant completion of the space of continuous connections, such that the projection of the 
Yang-Mills measure to the space of gauge equivalence classes has a countably additive extension. 
We also consider the coupling of the Yang-Mills measure to determinants of Dirac operators. The 
basic problems are to prove that the coupled measure is absolutely continuous with respect to the 
background Yang-Mills measure, to find a reasonable formula for the Radon-Nikodym derivative, 
and to analyze the action of SDiff. 
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0. Introduction 

0.1. The Y Mz-measure 

To discuss the Y M2-measure we need the following data: 
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K = connected compact Lie group, 
( , ) = AdK-invariant innerproduct, 

.E = compact 2-manifold (possibly with boundary), 
w = jinite area form or&, 

(0.1) 

P + C = principal K-bundle. 

The Yang-Mills measure associated to the data in (0.1) is written heuristically as 

(0.2) 

where A is a connection on P, DA denotes the formal Lebesgue measure on the space 
of connections of P, and *FA = FA/w. In this two-dimensional setting it appears that 
this measure, applied to gauge invariant functions, has an unambiguous meaning (see, e.g. 
[GKS,Dr,KlK,Sen]). 

The starting point of this paper will be a known direct definition of uy~ = u;YMMz as 
a finite, finitely additive measure, which we will recall in Section 2. The existence of this 
direct definition is usually expressed by saying that the Villain lattice approximation to Y A42 
is exact; this is undoubtedly the most remarkable aspect of two-dimensional Yang-Mills 
theory. However the measure uy~ cannot be extended to a countably additive measure in 
a natural way. For this reason, in addition to the usual physical considerations, it is the 
projection ?‘r*VyM of VYM to the space of gauge CqUiValenCe ClaSSeS of COnneCtiOnS which 
is the primary object of interest in this paper. 

Our first objective is to extend rr*uy~ to a countably additive measure and describe its 
support in geometric terms. This is nontrivial because there does not appear to be a natural 
way to view n*uy~ as a countably additive measure on a space of equivalence classes of 
differential geometric connections, even in the distributional sense (“natural” essentially 
means equivariant with respect to automorphisms). The approach which we will advocate 
is to map the space of connections to, what we will choose to call, the space of gluon 
potentials. The idea is that a continuous connection, in the sense of differential geometry, is 
determined by the corresponding functor of parallel translation along all C’-curves of the 
base space. The space of (C-“) gluon potentials is simply the space of all functors (dual to 
Ca-paths) with the formal properties of parallel translation. 

In the language of Physics, this correspondence amounts to viewing gauge fields as 
constrained chiral fields on a loop space (see Ch. 7 of [Poll). In the language of Probability, 
this amounts to viewing K,VYM~ as a certain continuous version of a stochastic process 
(holonomy) indexed by closed loops. In Geometry this idea has been used by Driver to 
parameterize isomorphism classes of principal bundles with connections (see [Dr2]), and 
by Ashtekar and collaborators in the investigations of quantum gravity and knot invariants 
(see [AL]). Our claim, which we have not completely substantiated, is simply that this point 
of view is technically useful in understanding YA42 (this is also suggested in [KlK]; the 
question of whether this (or some related) point of view is useful for YM3 or YM4 is a 
fundamental unresolved issue; see [Gr,Dr] for further discussion). 
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Once this point of view is adopted, ideas of Dudley can be used to give a very plausible 
argument that rr*uy~ is supported on the space of C-‘Y-gluons (gauge equivalence classes 
of gluon potentials dual to CU-curves), for any a! > 1; the argument we give is completely 
rigorous only in the abelian case. The intuition behind this is the following. In the abelian 
case the formal measure (0.2) in some gauge, can be viewed as a Gaussian measure corre- 
sponding to the IV’-norm of the connection A. In our two-dimensional setting, this means 
that YM2 (in our fixed gauge) has measure zero on pointwise defined connections, but full 
measure on distributional W-‘-connections, for any 6 > 0. Since continuous connections 
define C-‘-gluons, it is not surprising that the Y M2-measure is supported on C-“-gluons. 
for any a > 1. 

By choosing coordinates for the surface appropriately, one can express X* uy~ as a certain 
(finite codimensional) conditioned measure associated to an iterate of Wiener measure on 
the double path space of the gauge group. The disintegration of n*uy~ relative to the natural 
fibration of this space is of intrinsic interest, for it provokes speculation about extensions 
to higher dimensions. This development is hinted at by the formal expressions in [Fine]. 

The main original objective of this work was to find a characterization of d = 2 Yang- 
Mills measures in terms of their symmetry. At this point we can only offer a conjecture. It 
is always the case that n,vh,u, , for each value of Planck’s constant, is invariant with respect 
to the natural action of SDiff(C) on gluons (when A = 0, rr*u”yU, should be interpreted 
as the canonical symplectic volume element on the moduli space of classical solutions). 
We conjecture that, modulo the possibility of reducing the structure group, the n,$,, 
A > 0 are (up to a multiple) the only finite ergodic SDiff(C)-invariant measures on the 
space of gluons. This would be an attractive form of the assertion that the YMZ-measure is 
unambiguously defined. When A = 0 this reduces to the assertion that the ergodic invariant 
probabilities for the action of the mapping class group on the space of classical solutions 
are parameterized by the structure group; this assertion completely determines the form of 
the classical limit, which was computed directly in [Fo]. 

0.2. Line bundles 

The basic observables of Y M theory are Wilson loops, and in this paper we have codified 
this by viewing X*VYM as a measure on the space of gluons. However as soon as one 
attempts to couple YM to fermions, or to use YM2 as a stepping stone to understanding 
Y M3 + Chern-Simons, then one encounters more sophisticated random variables. We will 
first explain how these arise from a purely mathematical point of view; in Section 0.3 we 
will briefly reconsider this from the point of view of Physics. 

Suppose that C is closed and oriented. Let A denote the affine space of K-connections 
on P, and let C denote the space of gauge equivalence classes. Subtleties aside, the space C 
is the classifying space for the gauge group K of P. Line bundles are classified essentially 
by 7r2K. 

For simplicity of exposition, suppose that K is simply connected and has a simple Lie 
algebra. In this case line bundles are parameterized by Z, and a generator can be con- 
structed using the Wess-Zumino-Novikov-Witten cocycle, following Mickelsson [Mi], or 
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equivalently, the Chern-Simons functional, as in [RSW]. This bundle comes equipped with 
a hermitian structure (because the cocycle is unitary). In a completely explicit manner, a 
power of this generator can be identified with the determinant line bundle of %operators 
coupled to connections on AdP, relative to a choice of Riemannian spin structure on the 
surface. In this realization the hermitian structure is realized by the Quillen metric, which 
involves Ray-Singer regularization of determinants of Laplace-type operators. Combining 
this hermitian structure with the Y&22-measure, we should formally have unitary represen- 
tations 

SDiff(E) x P(Det a@ + C). (0.3) 

The analytic obstruction is that n, uy~ is not supported on the space of connections for which 
the hermitian structure is defined. To be quite precise, the Mickelsson cocycle shows that 
the hermitian structure is defined on gauge equivalence classes of continuous connections 
(essentially C-‘-gluons), while the measure is defined on C-(y-gluons, for (Y > 1. The 
upshot is that there is a logarithmic divergence. 

There are at least two conceivable ways of proceeding to define the representation (0.3). 
One is to regularize (in an equivariant way) the divergent expression for the integrand in 
the integral defining the inner product, e.g. 

ldet %12’ dn,vY,tt([AI) = exp(-K~(W) dn,e,d[AI), (0.4) 

were det 3, is the canonical section, and a is the (0,l) part of A. Our objective is to show 
that%e total expression 

(llE)ldet %12.’ d~*VyM([AI) (0.3 

can be properly defined as a measure; in fact, because the divergence is mild, we strongly 
suspect that this measure is absolutely continuous with respect to ~,UYM (this is certainly 
true in the abelian case). Furthermore this measure, viewed more abstractly as a measure 
with values in the bundle JDet a(- 2s, should be invariant with respect to SDiff(C), so 
that we do obtain a unitary representation as in (0.3). As in the case of the support problem, 
our arguments are only very plausible. 

The main step in making sense of (0.5) is to find an analytically tractible expression for 
the <-determinant. In the case of S2, we can generically write 

A = g*+‘(ag*) - (&)g-‘, (0.6) 

where g is a map into G, the complexification of K. The gauge equivalence class of A then 
corresponds to J2 = g*g. In terms of this coordinate for the moduli space of connections, 
the measure (0.5) is heurist?cally written as 

1 

72 
exp(E(D) + iwZlV(J2)) exp 

( s 
-k (a(~-‘an) A *a&+X?)) D52, (0.7) 

> 

where the first exponential factor is the expression for the <-determinant (involving the 
energy and the Wess-Zumino functionals), and the second is the density for the Yang-Mills 
measure. 
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A possible alternate method would be to directly evaluate the spherical function 

SZXff(C) + C: 4 + (#Jet 5, der a); (0.8) 

this would be of considerable interest in Physics, as we will explain below. 

0.3. Interfaces with Physics 

The quantum field theory corresponding to YM2 is in many ways quite simple; in par- 
ticular the space of states is the Hilbert space of central functions on the gauge group, and 
the time evolution, corresponding to an annulus of area A, is given by the heat semigroup 
at time A. However when one considers the theory on more general surfaces, while it re- 
mains transparent at the level of the Villain approximation (so that the partition function 
can be calculated), it is nontrivial at the level of holonomy, principally because there is a 
complicated classical limit (see [Will for an account of this). 

Coupling YM2 with (possibly massive) fermions basically amounts to making sense of 
the path integral measure 

where DA,~ is the full Dirac operator (possibly with mass) coupled to the gauge potential 
(one cannot straightforwardly couple YM2 to the chiral Dirac operator, because of the 
existence of an anomaly; see [Mi2]). 

In the massless case, it seems reasonable to believe that this theory can be explicitly 
constructed and computed. In particular the space of states (corresponding to a circle) is 
known (see [Mi2]), and it appears that the Hamiltonian has been rigorously constructed (see 
[Mi2,LS]). From the path integral point of view, one begins with the formal identity 

det(DA) = detla,12; 

one is tempted to interpret the latter determinant as the Ray-Singer <-regularized determi- 
nant, so that the partition function is equal to the integral of aregularized version of (0.4). The 
computability of the theory is, in this interpretation, closely related to the representation- 
theoretic problem of computing the spherical function (0.8). 

Of course the ultimate justification of this (assuming that it all fits together) will have to 
emerge from an analysis of lattice gauge theory approximations, since this is the basis of 
intuition about the physical content of gauge theories. In the massive case, [KlK] has shown 
the existence of a path integral, by considering a limit of lattice approximations. However at 
present there does not seem to be any real insight into the geometric meaning of this limit. 

A second interface of this theory with Physics involves Y M3 + k * Chern-Simons. The 
space of states for this theory, corresponding to a closed spin 2-manifold C, is thought 
to be the quantization of the space T*C, where the symplectic structure is the sum of the 
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canonical structure plus k-times the pullback from C of a specific form that represents a 
generator for H*(C, Z) (see [AM]). Thus it should be possible to realize this state space 
as the space of sections of the line bundle (Det a)@‘, equipped with an appropriate unitary 
structure. It would be remarkable if this unitary structure turned out to be identical to the 
one we conjecture exists by virtue of (0.3), since this has more symmetry than one would 
naively expect. 

0.4. Organization of the paper 

The paper is currently organized as follows: In Section 1 we discuss the definitions of 
a gluon potential and gluon, and what little we can say about the topology of the space 
of gluons. One might expect that the space of gluon potentials is contractible, and that 
the space of gluons is homotopy equivalent to the space of gauge equivalence classes of 
connections, but for the present this is a mystery. An important general fact is that a based 
gluon can be viewed as a holonomy functor, i.e. essentially as a homomorphism from 
loops based at a given point into K. This is a direct extension of ideas in [Dr2]. We also 
consider gluon potentials which are only defined on generators coming from a coordinate 
system (this is a coordinate dependent completion of the space of gluons). This is essential 
in understanding the connection between ~*UYM and iterates of Wiener measure. In an 
appendix we have indicated how these coordinate dependent considerations extend directly 
for higher-dimensional spheres. 

In Sections 2.1 and 2.2 we recall the definitions of the Y M2-measure and iterates of Wiener 
measure, respectively, and in Section 2.3 we discuss how they are related. In Section 2.6 
we discuss the countable additivity problem. 

In Section 3 we present some obvious conjectures about the decomposition of the natural 
L*-representation of area-preserving diffeomorphisms, and the ergodicity of n*uy~. In 
Section 3.2 we formulate a conjecture to the effect that rr*uy~ can be characterized by its 
invariance with respect to area-preserving diffeomorphisms. 

In Section 4 we carefully identify the Mickelsson realization of (a power of) the canonical 
line bundle over the moduli space of connections with Quillen’s realization of the bundle 
using 3 operators. In particular this yields relatively explicit formulas for certain c-function 
determinants. The material of this section is of intrinsic geometric interest, because it sug- 
gests a way of viewing the so-called nonabelian theta functions as bonafide functions on 
the space of connections. 

In Section 5 we discuss the existence of the measures which are given formally by (0.5) 
(or (0.9)), and their relation to other natural measures. 

0.5. Notational conventions 

We will need to consider several different path spaces. Given a space X, PathpTqX will 
denote the space of paths from p to q in X; it will be understood that the paths are Co, i.e. 
continuous, unless we indicate some other degree of smoothness by a subscript, and the 
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domain of a path is I, the unit interval. Similarly Path*q*X will denote the space of all 
paths in X, and so on. 

For technical reasons, we will also need to consider a subcategory of P-paths, denoted 
Res Pathp . By definition c E Res Pathp, i.e. c is a restricted path, if c is a P-embedding 
of I \ S, where S consists of finitely many points. We only need this in the proof of Conjecture 
2.10, and it is an interesting question whether it can be dispensed with. 

(1.1) 

1. The space of gluons 

Let dc denote the space of continuous K-connections on P, in the sense of differ- 
ential geometry, and let CC denote the space of gauge equivalence classes of continuous 
K-connections, relative to the group of Ct -gauge transformations, &I. There are two com- 
pletions of these spaces which we will need; they can be represented schematically by the 
following diagram: 

The spaces in the left column arise because they are the maximal domains of several natural 
differential geometric constructions; for example, if the surface C is oriented, then the space 
d,o has a natural symplectic structure given by 

%(VI> 172) = 
J 

(rll A 7I2), (1.2) 

c 

where nt, ~2 E 52k0(C, AdP) S Td,&. (But note that our favored Hamiltonian, the 
Yang-Mills functional (which requires the additional structure of a volume element), is only 
defined on the space of W’-connections, as is the moment map for the action of Aut (P) 
on A, 

,u : A -+ (AutP)*: 6’ -+ L&, 

where curvature &J is interpreted as the linear functional 

(1.3) 

( 1.4) 

The purpose of this section is to define the spaces on the right, and related spaces, and to 
describe their topology. In Appendix A, we have indicated how our considerations extend 
directly to S3 and S4. 
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1.1. The dejnition of a gluon 

Let Paths@(z) denote the involutive topological category for which the objects are 
the points of E, the morphisms are the @-paths between points, and the involution is 
reversing the parameterization. There is a natural action of path reparameterization by the 
group Homeocf, (I). 

Let Mar(P) denote the involutive topological category for which the objects are the 
fibers of P, viewed as K-homogeneous spaces, the morphisms are the K-equivariant maps 
between fibers, and the involution is inversion. 

Definition 1.1. A Cpk P-gluon potential is a continuous reparameterization invariant func- 
tor from Pathck (C) to Mar(P). The set of all Ck P-gluon potentials will be denoted 
by POtentidSc-k, and the space of Kco-gauge equivalence classes will be denoted by 
GluOn&-k (to indicate the dependence upon P, if necessary, we will write Gluons(P), 
etc.). 

Remark 1.2. 
(1) The meaning of continuity in this context is the following: If Xj is a sequence of paths 

converging to a path x : I + C in Ck, then gy E Mor(PX,(o), PXj(l)) converges to 
gX E Mor(P,(o), PX(l)). The action 

Kc0 X POtentidsc-k + POtentidsc-k 

is given by 

(1.5) 

k, g + kg, where (k,g), = k(x(l))g,k(x(O))-‘. (1.6) 

(2) The domain of definition of a Ck-gluon potential can always be extended to piecewise 
Ck-paths in a canonical way. We will use this extension often, and without comment. 

(3) A continuous connection A on P defines a C-’ P-gluon potential g = g*, where 
g maps a path to parallel translation from the initial fiber to the final fiber. A gluon 
potential coming from a continuous connection has two special properties: 

(a> 

(b) 

DifSerentiability: Parallel translation along a path is C’ ; that is, if x(t) is a C’-curve 
in C, then for p E PX(o) the lift 

PX : t + g(s+,(st,,(P) (1.7) 

is C’ in P. 
Locality: If x(t) and y(t) are equal to first order at x (0), then for p E P,(O) the lifts 
pX and py are equal to first order. 

These conditions guarantee the existence of the cross-section 

cp : TZI,(,) -+ TPI,: x’(0) + -$X(t)~~=o? (1.8) 

which determines the connection. I believe that conditions (a) and (b) characterize 
the image of AC in PotentialsC-1. 
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(4) Note that 

dc C potentialsC-1 C C POtentidsc-k C C Potentialscml, ( 1.9) 

so that gluon potentials are analogous to distributional connections, but with the impor- 
tant difference that parallel translation is defined for gluon potentials. Note in particular 
that parallel translation is not defined for connections in the class W”. 

(5) In the definition above, we could consider the category of restricted paths instead of all 
paths. We will refer to these generalized objects as gluon potentials dual to restricted 
paths. 

A gluon potential is a map from paths to morphisms of P that satisfies a very large 
number of constraints. If we could find a primitive system of generators for the category 
Path::(C), then we could more simply regard a gluon potential as a function on this 
subset with values in Mor (P), satisfying a more manageable set of constraints. This does 
not appear to be feasible, but we will nonetheless find it useful to consider generalized gluon 
potentials that are defined only on a subset of all regular paths. In particular, in Section 1.3 
we will study a coordinate dependent completion of the space of gluons, which we will 
refer to as a space of coordinate based gluons. We will give the definition here. 

Suppose that 

,.U+D (1.10) 

is a coordinate for C, where c\U is a piecewise smooth 1 -simplex. The coordinate segments 

t + treiH and t -+ reirH (1.11) 

generate a dense subset of Path>:, (C), for any k. Hence a gluon potential g defines a pair 
of functions, by restriction, 

g’(r. 0) = g[l+[&] 3 and gsk 0) = glt,,,lrq. (1.12) 

where 0 5 r ( 1 and 0 5 8 5 2rr; g is completely determined by its restriction to these 
curves. 

Definition 1.3. A coordinate based gluon potential is a pair of continuous functions g’ and 
g” satisfying the constraints that apply to the restriction of a gluon potential. The set of 
all P-gluon potentials will be denoted by Potentials(COOrd), and the space of K&-gauge 
equivalence classes will be denoted by ~luons(COO’d). 

The advantage of this completion is that it can be described very explicitly, as we will 
see in Section 1.3; its disadvantage is that it is not equivariant. 

1.2. Gluons as holonomy functors, and topology 

Fix a base point xu E C, and temporarily forget about the principal bundle P -+ C. 
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Definition 1.4. A based C?-gluon is a reparameterization invariant functor 

h : Path~$“(.E) -+ Mar(K). 

For each topological type of bundle [P] E [E, B K], if we fix a representative P + E 
and an identification of PXO and K, then there is a map given by holonomy at x0, 

holonomy : 
Ll 

GIUonsbased,c-k (P) -+ (basedC-k-gluons). (1.13) 
[PlE[Z,BKl 

The following is a direct extension of Driver’s parameterization of isomorphism classes of 
bundles with connections in [Dr2]. 

Proposition 1.5. The map ( 1.13) is a bijection. 

Prooh Suppose that gl and g2 are gluon potentials for the same bundle P, and suppose that 
hl = h2, where hj is the holonomy of gj at x0. Then the equation 

k(cl)(gl)c = (g2L (1.14) 

implicitly defines a based gauge transformation k with k,gl = g2. This proves that (1.13) 
is l-l on each component. 

For each x E C we can find an open subset U such that x0, x E U and there is a smooth 
contraction of U to x0. Choose a covering of C by such open sets Cl’, and for each a, let 

C a : I x ua + ua : (t, x) + c;(x) (1.15) 

denote a contraction with c?(x) = x and c:(x) = xu, for all x E Ua. 
Now suppose that h is a based Ck-gluon. Define transition functions for a Co K-bundle 

in the following way: 

k ab : Ua f~ Ub + K: x + h~r+c.~x~-~.cp~x~~. (1.16) 

If h comes from a P-gluon, this clearly shows that we recover [PI, completing the proof 
that (1.13) is l-l. In the general case let P denote the bundle defined by these transition 
functions. and for each a let 

+” : Plus + Ua x K (1.17) 

denote an isomorphism of K-bundles such that k,b(x)eb IX = I,+” IX. 
We will now define a Cpk P-gluon potential g such that holonomy maps g to h. Note 

that g will be completely determined once we specify how g maps P,, to PI along each 
curve t -+ c:(x), for each x. In terms of the coordinate (1.17) glt+,;(,)l is the identity; i.e. 

g[rMc;(X)) = (VlJ’(VlX0). (1.18) 

It follows immediately from this that 

-I 
S[,+y,)) O qt-+,t = hc;,w’cfpY (1.19) 



D. Pickrell/Journal of Geometry and Physics 19 (1996) 315-367 32s 

This consistency relation implies that g extends canonically to a gluon potential with holon- 
omy h. This shows that (1.13) is surjective, completing the proof. il 

We now turn to the structure of the spaces of gluons and gluon potentials. 
There is a natural complete separable metric on the space Potentialsc-r ; it is given by 

P(gl3 82) = supd((g1L (g2)c) ( 1.20) 

where the sup is over embedded Ck-paths c, and d = dx,?. is the metric on Mor ( P.r, P,.) 
induced by the bi-invariant Riemannian structure corresponding to (., .). The automorphisms 
of P which induce Ck-diffeomorphisms of the base act isometrically on this space. 

Fix a basepoint xu and let K bnsed.CO denote the group of CO-gauge transformations which 
are trivial at x0. This group acts on potentials; let Gluons bnsed,C+ denote the quotient. The 
metric p induces a pseudo-metric on gauge equivalence classes, which we will denote by 
6. On the other hand, we can define a second metric p2 on based gluons by taking the 
supremum in ( 1.20) over closed paths at x0. 

Proposition 1.6. 

(4 K hnsed,C~ acts freely and isometrically on PotentiulsC-i. 

(b) ~2 I P I $9. 
(c) The space Gluons based.C-k is a complete separable metric space, and Ck-diffeomor 

phisms qf C act isometrically with respect to both 6 and ~2. 

Prooj (a) and (c) are obvious. 
To prove (b) we will use the open cover (U”) and contractions that were introduced in 

the proof of (1.13). For each a let 

Then 

( 1.22) 

Therefore there exists k E &,ased,CO such that for each a 

d(k(x), k”(x)) I m(kl, IsI). 

It is then easy to see that 

( 1.23) 

A&g> 4) I h(kl, IsI). 

This implies (b). 

(I .24) 

Ifp([g], [q]) = 0,then thereare basedgauge transformations k, such thatd(k,(ci )g,, qc) 
+ 0 uniformly for all knots beginning at x0. This implies that k, converges uniformly to k 
defined implicitly by 

k(cl) = qc o g,‘. ( I .25) 
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Then k is a Co based gauge transformation, and k,g = q on all knots beginning at ~0, hence 
on all knots. Hence p is a metric, and this implies (b). 0 

We would like to believe that POtOZtiUISc-k is a contractible space, and that 

?r : POtt?ntialSc-k + ~lUOnSbased,C-k (1.26) 

has local cross-sections. This would imply that GlUOnSbased is a model for the classifying 
space of Abased. This seems reasonable, because in Section 1.3, where we will specialize 
to 2 dimensions, we will see that there is a composition of maps 

C&&CO + 6!lUOnsbased,C-k + ~lUOns~s~~d)t (1.27) 

which is a homotopy equivalence. 

1.3. Coordinate based gluons and iterated path spaces 

In this section we will parameterize the space of coordinate based gluon potentials and 
gluons, relative to a coordinate 

U + D, 

as in ( 1.10). Our goal is to use the functions 

(1.28) 

g’(r, 0) = g~t+r,.el~l and g’(r, 0) = g{t+,reitsl, (1.29) 

where 0 5 r 5 1 and 0 5 0 5 2x, to parameterize the space of coordinate based gluon 
potentials in terms of iterated path spaces. This can also be used to parameterize coordinate 
based gluons in a topologically transparent way. However, there is a second and more useful 
parameterization for coordinate based gluons in terms of holonomy. This is essentially what 
appears in [Fine]. To fix the ideas we first consider: 

The disk. Fix a trivialization of P. In this case there is a bijection 

Potentials(coord) +-+ DoK x Path:,*(Pathb’*K), 

g ff (g’? 8). 
(1.30) 

Since the based gauge group of the disk is DO K, we have 

(coord) _ 
GIUonSbased = DoK XD~K Path:,*(PathA’*K), (1.31) 

a bundle with contractible fiber over a point. In this setting the radial gauge amounts to the 
standard identification of the fiber over the identity with the total space in (1.3 I), 

Pat’hj**Patha’*K -+ DoK XD~K Pathi’*Pathb’*K: y + [l, y]. (1.32) 

A second parameterization of gluons, using holonomy, is given by 

(coord) _ 
GIUonSbased = Path’,*Path’.*K r 0 ’ 

(1.33) 
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where the origin is taken as the basepoint in the computation of holonomy. 
eterized holonomy by fi for technical convenience (see Section 2.3). 

We have param- 

The sphere. We first assume that P is a trivial bundle. We identify the sphere with the 
disk, where the boundary points are all identified with the point at infinity. In this case the 
correspondence g * (g’, go> defines bijections 

YPotentials(cO*‘d’ ++ DoK x Pathf.‘( Path;‘* K), ( I .34) 

(coord) c-., 

G1uonsh,,s,d = DOK ~~2~ Path,!.‘Path;‘*K 
0 

( I .35) 

The second space is a principal fiber bundle with base (L K)o/ K and contractible fiber, 
hence is homotopy equivalent to the identity component of the based loop space of K. 

In the general case, aside from notational complications, the only real change is that the 
zero component of the based loop space is replaced by the component of the space 

L Mor(P0, PAlMor( 

which represents the topological type of P. In particular it is easy to see that the space of 
coordinate based gluon potentials is contractible. 

In general we can alternately describe based gluons using holonomy. We will implicitly 
use the isomorphism 

L Mor(P0, P,)/Mor(P,) Z R Mor(Po): yo + y;’ 0 yo 

in the following: 

Proposition 1.7. The space of coordinate based P-gluons is a principal bundle with con- 
tractible structure group and base space 

B = P-component C S2 Mor(P0). ( 1.36) 

More precisely, the map [g] + h dejines an isomorphism 

GluonsEeLd)( P) 

Y u Path)“8~Y;‘o~o’(Path~‘*Mor(P~~)) 
YEB 

=u (h(r, 0) E Path’%* Path’,*Mor(Po): h(l,O) = 1/H’ o vo), 
YEB 

( 1.37) 

where 

h(r, 0) = g a Oil$S27rO 
1 1 

and ye = g+,+q. 
OlPi? 

( 1.38) 

Proofi If gi and g2 are coordinate based gluon potentials for which yi = ~2, where yj is 
defined as in (1.38), then k defined by 

k(r. 0) = g$(r, 0) 0 (g;(r, O))-’ E Mor(P(,.o)) ( 1.39) 
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is actually a gauge transformation for P --+ S2. For the equality of the y’s guarantees that 
k( 1, 0) is independent of 8. 

It follows that (k,gt)’ = g;. If gl and g2 have the same holonomy h(r, 0) for all r and 
8, it then follows that 

(k*gt)” = s;* ( 1.40) 

because 

gs(r,8)=g’(r,B)oh(r,0)0g’(r,0)-’ (1.41) 

for g = g2, k,gt . Thus gt and g2 are equal as based gluons, proving that [g] + h is l-l. 
Given y E P-component c L Mor( PO, Pm), we can find a continuous field 

F(r, 0) E Mor(Po, P,,iS) (1.42) 

such that f(O, 19) = 1 and f(l, 0) = ye. 
Given holonomy h(r, 0) projecting to y, we define a gluon potential g by defining g’ = 1; 

and using g’, h and (1.41) to determine g’. This shows that [g] + h is onto. 
If we consider all bundle types at once, then we see that 

(coot-d) 

~~UO%a.Xd = (h(r, f3) E Path’%* Path’,*Mor(Po): h(1, 1) = 1) 

is a topological group. The projection to the base, 

is a group homomorphism, and the kernel is the free loop space 

Path~.*Path~~‘Mor(Po), 

which is contractible. Since G1uonsbased (word) (co”rd)( P) is a connected component of G1uonsbased , 

this implies the topological claims of the proposition. 0 

Closed suqaces of positive genus. We again first assume that P is the trivial bundle. 
Let C denote a closed surface of genus > 0. Represent C via a planar diagram in the 

usual way (see Fig. 1). 
We have located the vertices at the roots of unity, for notational convenience. To distin- 

guish between the two identical copies of crt , we have labelled one of them a; ; we do the 
same thing with j31, etc. To express relations induced by these identifications, we will need 
to consider the o-increments of a function (or section) defined in polar coordinates across 
the sectors of the disk determined by the rays from the origin to the 4 * genus(E) roots of 
unity. Thus given 

g(r, 0) E Path’** Path’,* K, (1.43) 

we set 

g”‘(r, t) = j(r, t/(4 * genus)), 
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and so on, where 0 4 t 5 1. The iterated path g and the vector 

j = (&W . . . . . &,U,) E (Path ‘.* Path ‘.*K)4*Wu.r 

clearly determine one another. 
As in the preceding cases we first use the map 

g --, (g’.&?) 

to obtain isomorphisms 

( 1.44) 

( 1.45) 

( 1.46) 

~otential.~~““Ord~ Y DQK x F. 

~luon~;,~.;;~’ Y DoK xKo F, 

where 

( 1.47) 

( 1.48) 

F = (g E Path;** Path;,*K: g”‘(l, .) =&l, .), .). 

This fiber is clearly contractible. 

(1.49) 

To identify the base in (1.48), suppose g E DO K, viewed as a purely radial gluon potential, 
and let PI, kbl, . . . denote the boundary values. For g to be a gauge transformation on C 
applied to the trivial gluon potential, we must have equality along identical edges, i.e. 

k”’ = kff; . . 3 3 k vnu~ B = ,&w,, ( 1 SO) 

The product 

Y aI = (ka;)-tkal 

is the holonomy of g around the loop indicated by double arrows in Fig. 2. 

(1.51) 
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Fig. 2. 

This is the first of 2 * genus invariants of g modulo Ku, gotten by replacing crt in (1.38) 

by QI, . . , &v,us, respectively; we set 

y = o/Q ) . . . ) ybRenU.q E (Path*‘*K)**genuS. (1.52) 

For y E (Path*~*K)2*@nUs to be the holonomy of some radial gluon potential, it is 
necessary that 

R(?P, yB[, . . ) yfineny = 1, (1.53) 

where 

genus 
R = n ~B’(0)(y”‘(l))-‘(yBi(l))-‘y”‘(O), (1.54) 

i=l 

and successive terms multiply from the left. For the meaning of the ith term is that it is the 
holonomy around the path indicated by double arrows in Fig. 3. 

Thus R itself is holonomy about the trivial loop. Note that in terms of the k’s, the ith 
term of (1.54) is simply 

(k~~(o>>-‘P~(o). (1.55) 

This leads to the following: 

Lemma 1.8. The map [g] -+ y(g) induces a bijection 

&K/ICo 2 i-component c (y E (Path*3*K)2*genUs: R(y) = 1). 

rf K is connected and simply connected, then { y : R(y) = 1) is connected. 

Prooj We have already observed that the map is injective. To prove the first statement, it 
therefore suffices to check that the image of the map is open and closed. 
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Fig. 3 

The second statement is equivalent to the well-known fact that all K-bundles on C are 
trivial, provided that K is connected and simply connected. But it is worthwhile to prove 
this directly. Thus we must show that every y satisfying the relation comes from some radial 
gluon potential g E Do K. 

We first determine the boundary values of g. Choose k @I arbitrarily. This determines k”; 
by (1.55). Since K is connected, we can choose k@I connecting k”’ (I) and kU; ( I). This 
determines ks;, again by (1.55). We then choose k”z so that it begins at k/3{ (0). and so on. 

The fact that the relation is satisfied guarantees that when we eventually choose kfisl,lllls, 
it is then automatically the case that 

(k&- (O))-‘ka’ (0) = 1. 

i.e. the boundary values form a continuous loop. The existence of g now follows from the 
assumption that K is simply connected. 0 

We now turn to the parameterization of based gluons using holonomy. We will write 

as in ( 1.44) where h” (r, t) will be interpreted as holonomy about the sector (see Fig. 4) and 

6 = aI. . . , p;,,, IS. 

Proposition 1.9. The space of coordinate based P-gluons has the structure qfajiber bundle 
with contractiblejber and base space 

B = P-component c (y E (PathMor(Po))2*g’“““: R(y) = 1). 
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Fig. 4. 

Fig. 5. 

More precisely, the map [g] -+ 7, h’ induces an isomorphism 

(coord) ” 
~~“ontxlS,d - ul 

h’ E (Path1**Path’,*Mor(Po))4*Re”US: y’(t) o h&(1, t) 
-FE 

= h”(l, t)-’ 0 y%), 6 = (~1, PI, . . . , &ems 1 
, (1.57) 

where hs denotes the holonomy of g around the contractible sector indicated in Fig. 4, and 
7 is dejned as in (1 S2). 

Remark 1.10. The geometric meaning of the 2 * genus conditions in (1 S7) is pictured in 
Fig. 5. 

ProojI Suppose that gl and g2 are two gluon potentials for which yI = y2. Define 

k(r, 6) = g; 0 (g;)-’ E Mor(P(,,e)). 

This defines an element in Ko because the y’s are the same. 
It then follows that (k,gl)’ = g;. If gl and g2 also have the same holonomy 6, it then 

follows that gl = g2. This proves that the map is injective. 
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Now suppose that we are given y and h’ satisfying the conditions in (1 S7). We first must 
establish the existence of g’ and boundary values k’ such that (1.5 1) is satisfied. As before 
we observe that the composition of maps 

Potentials(c”*‘d) -+ Co 
c 

Ll Mor(P0, Pcr.e) -+ Co 
D 1 c 

UMor(Po. Pc1.0) --f B. 

s’ 1 

has an image which is open and closed. This follows from the easily established fact that 
for each of these individual maps, the image of a connected component is open and closed. 

Once we have g’, ge is completely determined. The conditions in (1.57) guarantee that 
the corresponding g is in fact a coordinate based gluon potential on C. 0 

2. The Yang-Mills measure 

In two dimensions the Yang-Mills measure can be directly defined as a finite, finitely 
additive measure on the space of connections, or better, on the space of gluon potentials. 
We will recall this in Section 2.1. In Section 2.4, by choosing coordinates on the surface, 
we will identify this measure in terms of conditional probabilities associated to iterates of 
Wiener measure. We will recall the definition of Wiener measure and its iterates in Sections 
2.2 and 2.3, respectively. In Section 2.5 we consider the abelian case, and in Section 2.6 we 
show that rr*vyM is supported on Gluonsc-lmc, for any E > 0. 

2.1. The definition of vyM 

The Ad K-invariant inner product on f induces a bi-invariant Riemannian structure on 
K. Let A denote the corresponding Laplacian, and let 

H : lQ+ x K --f R+: t,g + H,(g) (2.1) 

denote the corresponding convolution heat kernel, i.e. 

((a/at) - $d)H = 0 and l$ Hr = hl. (2.2) 

Then 

H,(g) dg E Prob(K) and Hs * H1 = H,+, (2.3) 

where dg denotes the invariant probability on K. 
Given a tiling 7 of .Z with oriented edges, let V, E and F denote the sets of vertices, 

oriented edges and faces, respectively. There is a natural projection 

JV : BluOnS + n Mor(P,,, P,,): g --f (ge)eeE, 
E 

(2.4) 
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where g, denotes parallel translation from the initial fiber to the initial fiber along the 
oriented edge e. 

Define a measure on the space fl Mor(P,,,, P,, ) by 

du7 = n &req)(gaf) n dg,, (2.5) 
.fcF PEE 

where gaf is the “holonomy” around the boundary of f, i.e. gaf represents the conjugacy 
class of the morphism 

g ??n o... 
e” 0 g:: E MOr(Pbasepoim), (2.6) 

where 

af = f(clel t.. . + c,le,). (2.7) 

Since the holonomy is a conjugacy class, we can view it as a conjugacy class in K (which 
is noncanonically isomorphic to Mor( P,), for each 4). 

Suppose that 7’ is a refinement of 7. There is then a natural projection 

p:nMor+nMor. (23) 
E’ E 

The main result is the following, which is traced to Migdal in [Will. 

Proposition 2.1. p*(vlf ) = UT, 

Proofi A refinement involves either splitting edges or connecting vertices across faces, or 
both. Suppose first that 7’ is obtained by splitting an edge e E E as e = e2 o et. Then the 
projection p sends g,, , ge2 to g,, where 

$5 = gf?, og,, . (2.9) 

Since the integrand for VI’ depends upon g,, and ge2 only through g,, consistency is obvious 
in this case. 

Suppose now that 7’ is obtained by subdividing a face f E F into two faces ft , f2 E F’, 

by inserting an oriented edge e’. We must show that 

s 
HArea(fi)(gaf2)HArea(fi)(gafi) dg,f = H,k,(f)(gaf). (2.10) 

This follows from the convolution formula (2.3), because 

gaf = gaf2 0 gaf, , (2.11) 

and 

gaf, = g;’ 0 k, gaf2 = h 0 gel, 

for some fixed morphisms k and h. 

(2.12) 

0 
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Let B denote the subalgebra of the Bore1 subsets of Potentials generated by the mappings 
rr~, for all tilings 7. 

Corollary 2.2. There is a finitely additive measure WY,+, on (Potentials, t3). with finite 
total measure, with the property that vyM projects to VI, relative to the map ~7, for each 
tiling 1. This measure is invariant with respect to the natural action of Aut (P),. 

This construction is natural with respect to sewing. To formulate this, suppose that the 
surface 2 is obtained from a surface C by gluing one boundary component of Z to another. 
Suppose also w maps to &, with respect to the natural map C + %. There are natural maps 

PathsC -F Pathsi, 
Potentials(C) t Potentials(k). 

(2.13) 

The functorial properties of the measure VYM are summarized by the following: 

Corollary 2.3. With respect to the map (2.13), 

Also if C is the disjoint union of two surfaces with volume elements, then vyM, c is simply 
the corresponding product measure. 

2.2. Wiener measures 

Let T denote a positive constant, thought of as temperature. The Wiener measure VT on 
the path space Path ‘**K is defined as follows. Fix a subdivision (or triangulation) of the 
unit interval, 0 = su < si < . . . -c s, = 1. This determines a projection 

XT : Path’.*K + Kn: g + (g(sj))lijin. (2.14) 

We then define a probability measure on the image K” by 

%vT = fi HT(s;-si-i)(gl?,gi) fidgi 
I 1 
n 

= l-l ffT(st-si--l)(glY1lgi) d(gIY1,gi). 
1 

(2.15) 

These projections consistently define a finitely additive measure VT = vk* on the path 
space, because of the semigroup property (2.3). It is a nontrivial fact that VT has a countably 
additive extension. 

In terms of the principal fibration 

Path’,*K -+ K: g + g(l), (2.16) 

we have the disintegration 
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dv;* = s v;h HT(h) dh, (2.17) 

G 

where vT ‘.h is the normalized conditional Wiener measure on the path space Path’%h K. The 

probability measure v;” is determined by its projection with respect to the restriction of 
the map in (2.14), where II is replaced by 12 - 1. The image is defined by the expression in 
(2. IS), when g, is replaced by h, and the entire expression is divided by Hr(h). 

The normalized Brownian bridge measure I$” on L?K has positive measure on each 
connected component. Relative to the fibration 

0 + (G’K)o + i2K 2, nlK + 0, (2.18) 

we have 

(2.19) 

where 

cy > 0, (2.20) 

and vr denotes the normalization of the restriction of the Brownian bridge to the y- 
connected component of a K. The numbers cy can undoubtedly be computed explicitly. In 
fact it is interesting to ask, given an arbitrary compact Riemannian manifold with basepoint 
(M, m) relative to the projection 

Q(M, m) G Xl (M, m), 

what can one say about the numbers cy for the projection 

where v; is the Brownian bridge? 

2.3. Iterates of Wiener measure 

As we pointed out above, the abstract fact underlying the existence of Wiener measure 
is the semigroup property. The family of Wiener measures (VT )o<T also has the semigroup 
property, on the group Path’**K: 

Vt, * vt2 = Vt,+t*. (2.21) 

This follows from the easily verified fact that the one-parameter family of projections 
(n;*v,: t > 0), defined by (2.15), is a semigroup (see [MI). 

This makes it possible to iterate the Wiener construction. Fix T as before. Given a 
subdivision as before, there is a projection 

&, : Path’.*Path’3*K + (Path’.*K)“: y + (v(q)). (2.22) 
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We define a probability measure on (Path’** K)” by 

(2.23) 

The semigroup property (2.21) implies that the projections (2.23) consistently define a 
finitely additive measure v$’ on the double path space. It can be proved that the measure 

v?’ has a countably additive extension, by the same argument as for Brownian motion on 
a finite-dimensional Lie group. 

If we choose a second subdivision 0 -C rt < . ’ . -C t, = 1, and we set gij = y (s;, I,j), 

then the projection y + (gij) maps v?’ to 

f-k ~(.,-s,_,~(tj-t,~~~~(S;rjl~gi-t.j-tg,~~,jgi,j)dRi.j~ 
i=l j=l 

(2.24) 

This follows directly from (2.15) and (2.23). 
In this section we will consider two conditional disintegrations of the measure VP’. First, 

relative to the principal fibration 

Puthl**(Puth’q*K) + Puth’.*K: y + y(l), (2.25) 

there is a disintegration 

d”;) = 
s 

$-‘(gig(l) = h) dnr(h), (2.26) 

Path’,*K 

where h + vr’(glg( 1) = h) is the associated regular conditional probability distribution 
on the fibers, Path’,h (Path ‘**K). These conditional measures can be described in a quasi- 
explicit way using Ito’s isomorphism of probability spaces 

I : (Puth’**f, I$*) + (Path ‘.*K, v;*): x + g, (2.27) 

where x and g are related by the stochastic differential equation, interpreted in the sense of 
Fisk-Stratonovich, 

dx = g-’ o dg. (2.28) 

We will simply state the result, since Ito’s isomorphism reduces the problem to a linear 
problem. 

Proposition 2.4. We have 

nd2)(g,, . . . t gnlg, = h) 

where A m=s,- s,-1, and& = z((sM/s,)I-lgd. 
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The second conditioning is more elementary. For the fibration 

Path’**Path’**K -+ K: g -+ g(1, 1) (2.29) 

there is a disintegration 

(*) = “T s 
(“;)(.Ig(l, 1) = k)}Hr(k)dk. (2.30) 

K 

In this case, as in the one-dimensional case, we can explicitly construct the conditional 
probabilities; for the projection corresponding to (2.24), the image of $‘(.[g(l, 1) = k) 
is given by the formula (2.24), where g,,, is set equal to k, dg,,, is deleted and the entire 
expression is divided by HT (k). 

2.4, Y M2 and iterates of Wiener measure 

By considering the path space representations for coordinate based gluons in Section 1.3, 
we will now show that YC*UYM can be realized as a conditional measure for 2-fold iterates 
of Wiener measure. Our goal is to show that this can be done in principle, and we will work 
through all of the details only in the cases of the disk and closed oriented surfaces. 

The disk. As an elementary example we first consider the disk with Lebesgue measure. 
We will use the parameterization by holonomy 

(coord) 
~lUonSbased + Paths’+Paths’**K: g + (gr,s) = 

Take subdivisions 0 = r-0 < . . . <r,, = 1 and0 < 00 < ... < 0, = l.Thisgivesrisetoa 
tiling 7 of the disk, and the corresponding projection of vy~ is given by 

= fl H~(ae)(ar)(g(rj. &)g(rj, %l)-‘g(rj-l, %l)g(rj-l, h)-‘) fl dg, 

(2.32) 

When we project from (gel to the holonomy variables {g(rj, &)} the integrand in (2.32) 
does not change. The resulting expression is exactly the corresponding local expression 
(2.24) for the iterated Wiener measure VA*). This proves the following: 

Proposition 2.5. Relative to the identijication (2.31), 

Leb (2) 3r,VYM = v, . 

The sphere. We equip the sphere S* with the standard area form. In order to neatly match 
up YM2 with an iterated path measure, we parameterize S* using the disk in such a way 
that 
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Area((r 5 p I: r + Ar, 0 5 I/J 5 t) + A0)) = 4n(Ae)(Ar). (2.33) 

This can be done by starting with geodesic coordinates and reparameterizing the radial 
coordinate (explicitly, C#I = i( 1 - cos(r)), where 4 is the azimuthal angle). 

As in Proposition 1.7, we can use holonomy to identify ~luon,~~~~~,~) with 

[h(r, Q) E Path’,*Path’.*Mor(Po): h(l, 0) E [P] C 52 Mor(Po)], (2.34) 

where [P] denotes the connected component corresponding to P. This is a fiber bundle 
with base [P] c Sz Mor( PO), where the projection is given by 

proj : h -+ q, ~(0) = h(l, 0). (2.35) 

For our purposes it is useful to think of the total space as the open subset proj -’ ([ PI) of 
the inverse image of 1 with respect to the projection (2.27). 

As in the case of the disk, we consider the projection nTuy,+~. This is given by the 
same formula (2.32), except that rr is replaced by 471, and g(m, 0,) is replaced by 1. 
By comparing this modified version of (2.32) and the modified version of (2.24) which 
represents the conditional measure (fork = 1) in (2.30), we conclude that 

~*VYM = ff4nCl) * !l/E)u~Sj(dh(l, 1) = I)lproj-lc~PI,. (2.36) 

By considering the regular conditional disintegration associated to the fiber bundle struc- 
ture, we obtain the following abstract. 

Proposition 2.6. In reference to (2.34), we have 

T*UYM = ff4n(l) 
s 

u~;(sls(l) = rl) du:;‘W. 

IPI 

Remark 2.7. The integrand is the regular conditional distribution for the iterated Wiener 
measure on the spaces 

Path’.“(Path’.*Mor(Po)), 

as defined in (2.26), and which we described quasi-explicitly in Proposition 2.4; duifl’( y ) de- 
notes the normalized restriction of the Brownian bridge to the P-component of SCI Mor ( PO), 
as in (2.19). 

Closed sutiaces of genus > 0. As in the case of the sphere, we parameterize the surface 
C (minus a l-simplex) by a disk, where area is computed by (2.33), with the total area T 
in place of 4x. We will first identify ~T,LJYM with a conditional measure on the space of 
conditioned multiple paths in Proposition 1.9. 

According to Proposition 1.9, we can identify G~uo~s~:~:‘) as a total space in the fol- 
lowing way. There is a projection 

R : (Path’~*Path’y*Mor(Po))4*@‘US x Mor(Pg)2*RenUs -+ K, 

R((k -lo)) = R(y), 
(2.37) 
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where y = proj (h, “/o) is determined by the initial conditions v’(O) = yi and the 2*genus 

conditions in (1.57), and R is defined by (1 S4). Then G1uonsbased (coord) is the open subset 
proj-‘([PI) of the inverse image of 1 with respect to R. 

Equip the space 

(Path”*Path’~*Mor(p~))4*genuS x Mor(p0)2*genus (2.38) 

with the probability I_L equal to the product of the iterated Wiener measures, each with 
temperature T/(4 * genus), and the invariant probabilities on the factors Mor(Po). We 
assert that 

rr*uy~ = const * (l/E)p.(.IR = l)(,,,j-~(lPl~. 

To understand the meaning of the right-hand side, note that 

(2.39) 

R(k -/t-J) = ~CJ&Yl, l)(y;)-‘ha’(l, W& l)(y(yhP’(l, l)yfyl. (2.40) 

All the distributions involved in this formula are smooth, so that the distribution of R 
is a smooth function times Haar measure. Hence we can define the conditional measure 
/I(.]R = l), as we did in the last paragraph of Section 2.3. 

To check (2.39), as in the previous cases, we first consider n~ur~, where we assume that 
7 includes the 4 * genus roots of unity as vertices. This will again be given by a formula 
of the form (2.32), where the integrand depends only upon the holonomy variables. When 
we project from the edge group variables to the holonomy variables, we obtain (2.39). The 
constant has to be computed independently, say as in [Will. 

This leads to the following: 

Proposition 2.8. Relative to the projection 

proj : ~luons~S~~d) + [P] c (7 E (Path*Y*Mor(po))2*genus: R(y) = l}, 

there is a regular conditional disintegration 

rr*uy~ = const 
s 

{u,) dulP1(~]R = l), 

[PI 

where v[~](~\ R = 1) d enotes the conditioned measure for the product of Wiener measures 

( (~ath*~*~or(~o))2*genUS, n uT,(2rgenus)) . 

2.5. The abelian case 

Suppose that .X is closed and K = T, a torus. In the case of S*, the simply connected 
case, rr,uy~ (as a finitely additive measure) is essentially a Gaussian cylinder measure, 
in terms of curvature (in probabilistic jargon, the curvature is identified with white noise 
for the conditioned r-valued Brownian sheet that projects to n*uyM via the exponential 
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map). The nonsimply connected cases are only slightly more complicated; in these cases 
the space of gluons is a H’(Z, T)-principal bundle, ~*uy~ is H’(C, 7’)-invariant, and the 
projection to the base (gluons restricted to contractible curves) can be expressed in terms 
of a Gaussian distribution of the curvature. All this is well known, but it is worth reviewing 
it from our point of view. 

We begin with a few preparatory remarks. The exponential map defines an exact sequence 

O--+A+t-+T+O. (2.41) 

For the corresponding exact sequence of sheaves of P-functions on C with values in 
these groups, the induced long exact sequence of cohomology yields the first Chern class 
classification of principal T-bundles, 

H’(C.C~)ZH2(C,A)2:A. (2.42) 

Suppose that A is a T-connection on the T-bundle n : P -+ C. Because T is abelian 
the curvature dA has a well-defined push-forward X* dA. The image of the map 

A -+ R*(C, t) : A + F, where F = .TT, dA, (2.43) 

is the affine submanifold defined by the condition 

s F =q(P) E A. 

c 

(2.44) 

The case C = S2. The way in which the Gaussian distribution of curvature, the Brownian 
sheet, and K*UYM are related is summarized by the following diagram: 

F E f2*(.E, t) : 
.I 

F = cl(P) 
d 

C 

c 
I 1 (holonom~) 

x E PathO~*Path”**t: x(1, 1) =c,(P)]a(h E Path:.*Patha’*T: h(1:) E [PI) 

T 
Gluons( P) (2.45) 

Here x is the normalized f-valued Brownian sheet, corresponding to the inner product 
(.. .), with the indicated conditioning; h is distributed according to n*uy~; and F is a 
Gaussian centered at *cl (P), corresponding to the inner product 

(FI A *F2). (2.46) 

The relation between x and F is given by 

r 0 

x(r, 19) = 
ss 

F, 

0 0 

(2.47) 



342 D. PickrelUJournal of Geometry and Physics 19 (1996) 315-367 

For later purposes it is useful to note that the correspondences in (2.45) are natural with 
respect to automorphisms. We can exploit this to compute the natural representation. Let 
Ho denote the Hilbert space completion of 

(2.48) 

in the norm given by (2.46). Let UG denote the corresponding Gaussian cylinder measure. 
Then as SDiff(E)-modules 

L*(n,vr~) Y L*(duc(. + *cl(P))) Z L2(dvc) 2 c e&H,*), 
k?O 

(2.49) 

where the last correspondence is defined by the Fourier transform (see Ch. 6 of [Hi]). In the 
case that t is one dimensional, the components of the decomposition (2.49) are irreducible 
(this is originally due to Kirillov; see [VGG]). The most transparent proof of this uses the 
fact that SDiff(E) is n-fold transitive on C (see [Ch]). 

The positive genus case. Consider the relations which define the space of gluons in the 
case of positive genus, as described in the paragraph following (2.37). Since K is abelian, 
the relation R = 1 in (2.40) is equivalent to 

nhY1, l)h”‘(l, l)h%, l)hP’(l, 1) = (n~~(V,“)-‘(yoP)-‘~~)-‘. (2.50) 

The group element on the left is the identity. Thus both sides of (2.50) are the identity. 
Recall that the yi are parallel translation around the closed paths described in Fig. 2, 

with 8 = 0, which we will denote by 6l. These paths are generators for the fundamental 
group of C based at the center of the disk. That the right-hand side of (2.50) is 1 then says 
that the ~0s define a representation of nt (C, 0). 

The fact that the left-hand side of (2.50) is 1 implies that the map 

r-+ l-I hcY(r, l)hU’(r, l)hS(r, l)hP’(r, 1) (2.5 1) 

is in 52 T, the based loop space. The condition y E [P] says that this loop has winding 
number ci (P). 

We thus see that the space of gluons is a product, 

GlllO?lS 
(coord) - = H’(C,T)x([gl:gsl=l,S=a~,...,B~,,,,), (2.52) 

where we identify H’ (C, T) with based gluons that depend only upon the homotopy type 
of closed paths. It is not hard to see that TT*VYM is a product measure in this presenta- 
tion. However this is not quite what we want, because the product structure (2.52) is not 
SDiff(Z)-equivariant. 

Instead we will view Gluons and G~uo~.s(““~‘~) as H’ (C, T)-principal bundles, 

Gluons + H’(.E, T) 

J (2.53) 
I3 
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The action of H’ (C, T) on gluons is given by 

Gluons x H’(C, T) + Gluons: g, k + g k, 

where (g k)c = g,k[,], for a closed path c. Here we are implicitly using the fact that 
H’ (C, T) can be defined without reference to a basepoint, and Gluons can be realized as 
functors on closed paths independent of basepoint, as in Section 1.2, because T is abelian. 

The base space B can be identified with functors on the involutive subcategory of con- 
tractible paths, where the projection is simply given by restriction. Intuitively these are 
gluons whose values can be expressed in terms of curvature alone. 

To realize the projection n*uy~ to the base B(coord), we can use an analogue of the 
diagram (2.45) where the condition on the curvature F remains the same (the integral 
over C is cl(P)), and the double path space with values in the Lie algebra is replaced by 
4 * genus copies of the path space, and the constraint 

@Vlus 
c (X,(1, 1) +X,/(1, 1) fxg(1, 1) +q?f(l, 1)) = Cl(P) (2.55) 

is imposed. 

Proposition 2.9. Viewing Gluons as a H ’ (C, T)-principal bundle, as in (2.64), we have 

7c*vy~ = const 
s 

(VHanr)d~evG. 

t3 

2.6. Support properties of n,vy~~ 

Given that we have identified rc*uy~~ with a conditional version of iterated Wiener 
measure, we will now use ideas from [Dudley] to argue that rr,uy~~ is supported on the 
space of gluons dual to singular P-knots, a! > 1 (see Remark 1.2(4)). Our argument is a 
complete proof only in the abelian case. 

Conjecture 2.10. The jinitely additive measure n, vyM extends uniquely to a countably 
additive Bore1 measure on the space of gluons dual to singular Ca -knots, for each a > I. 

Pro08 For abelian K. We first consider the disk. In this case the result follows almost 
directly from Theorem 4.2 of [Dudley], as we will now explain. 

Suppose that c is a closed embedded loop in C (of some smoothness class). The random 
variable associated to c by holonomy h, is the exponential of the Gaussian variable associ- 
ated to the characteristic function xfnr(,.., where Znt (c) is the region of .E interior to c (this 
is well defined because c is oriented); formally, 
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We will write xc for the random variable 

(2.57) 

Dudley’s theorem implies that if the space of P-closed embedded curves, KnorscZ* (C), 
is equipped with the metric 

P(CI, ~2) = dInt( Int(c2)) (2.58) 

(the measure of the symmetric difference) then for each c E Knots~G* (C), there is a version 
of h, such that 

c -+ h,(F) (2.59) 

is a continuous function with probability one, provided that a! > 1. In fact combining 
Theorems 4.2 and 2.1 of [Dudley], and Theorem 3.1 in [Dudley2], we can assert that there 
is a modulus of continuity for x,(F) on bounded sets; to be precise, given s such that 
(Y-1 < s < 1, 

l&,(F) - x,,(F)1 i KP(Cl, c2F (2.60) 

for all cj such that ]cj 1~” 5 M, with probability one, where K depends on M and s. [This 
is deduced from Dudley’s results in the following way. The set of knots with P-norm 
bounded by M is contained in the set C = I(2, cr, M), in Dudley’s notation. Theorem 3.1 
of [Dudley2] asserts that 

E -’ < H(C, E) < E-,7 

for small E and for any t < 6’ c s, where H(C’, E) is the metric entropy of C. Theorem 
2. I of [Dudley] then asserts that the two functions of h, 

h s H(C, 6) de < 

0 

are both moduli of continuity.] 
If c is a singular knot, then X, can be written as a linear combination of random variables 

of the form (2.57). It then follows from (2.58) that 

Ix,,(F) - x,,(F)1 i Klct - c21&’ (2.61) 

for all singular knots with 5 d self-intersections and ]cj ]~a 5 M , with probability one, 
where K depends upon M, d and s. This implies continuity in the abelian case. 0 

We now consider the nonabelian case. Let h(r, Q) E Path:‘* Path:** K denote holonomy 
around the pie shaped region as in Fig. 5. To express holonomy around a general curve based 
at zero, we will use the radial gauge 

g’ = 1, g’=h. (2.62) 
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Let +h denote the differential of h with respect to the second variable. Then the stochastic 
process 

H 

x(r, 0) = 
s 

h-‘(r, llr) 0 a2h(r, +I, (2.63) 

0 

interpreted in the sense of Fisk-Stratonovich, is the Brownian sheet with values in f (formally. 
the connection is given by 

A = 2 (do). 

To express holonomy in terms of x, we will use line integrals as defined in Ch. 6 of [Wa] 
(see also Section 3 of [Dr]). Given a singular knot c based at 0, parallel translation along (’ 
is the solution of the stochastic integral equation 

g,(t) = 1 + 
s 

g,(r) 0 a2x(c(r)). 

0 

(To make sense of the stochastic integral, it is necessary to divide the curve c into pure 
pieces, in the terminology of Walsh; this is possible because c is a singular knot.) We then 
have h,. = g(c. l), where 

(2.65) 

fT(c. f) = c %*(C, t), (2.66) 
1110 

qo(c, t) = 1. %+1 cc, t) = s rln(c3 5) 0 azx(c(s)). (2.67) 

0 

Thus 

(2.68) 

where xc is the continuous extension to P-curves discussed in the abelian case. 
We now need to show that we can choose each n,, to be a continuous function of both L 

and t. The following conjectural lemma would complete the proof of Conjecture 2.10. 

Conjectured lemma 2.11. We have 

I%7(clqt) - 7h(C2, r)l 5 K”ph. C2Yf” 

,for all cj such that Icj Jca 5 M, with probability one. 

Idea of proof. This is true for ~1, based on our knowledge of the abelian case, because 

VI (c, f) = x,, 
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where C is the closed curve which traces c to time t, then swings around to the line 8 = 0 
along a circle, and returns to the origin; this is because in our gauge parallel translation is 
trivial along the latter two segments. 

3. On harmonic analysis 

3.1. On decomposing SDiff x L*(n,uy~) 

The finitely additive measure VyM = vFM is invariant with respect to the natural action 

Aut(P, o) x Potentials -+ Potentials. (3.1) 

In two dimensions the natural map Aut (P) -+ Diff(E) is surjective, for any P. It follows 
that the finitely additive measure ?‘r*VYM is invariant with respect to the induced action 

SDiff(E) x Gluons + Gluons. (3.2) 

Given cl, . . . , c,, E PathPqP(C) and a function f : K” -+ @ which is K-conjugation 
invariant. there is an associated function 

&.f : Gluons + @: [gl + f(g,, , . . . , gc,>. (3.3) 

This makes sense because Mor( Pp) and K are canonically isomorphic modulo inner auto- 
morphisms. For 4 E S Diff( .E) 

@*@c.f = @ql0c,f. 

Now consider the unitary representation 

SDiff(C) x L*(Gluons, n,uy~). 

There is an invariant filtration of a dense subspace of this L*-space, 

(L*)(u) c (L*)(l) c . 

where (L*)(“) is spanned by L*-functions of the form (3.3). Let 

L2 = c CBLfn, 
n?O 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

denote the corresponding invariant decomposition of the Hilbert space. In the case that 
C = S* and K = T is a torus, this is equivalent to the decomposition (2.49). 

The representations LfR, are in general far from irreducible. For example if .E has a 
boundary, then the boundary will be invariant under diffeomorphisms, and one can define 
invariant vectors in terms of holonomy about the boundary components. Also diffeomor- 
phisms respect the decoupling of “internal degrees of freedom”; for example in the case 
C = S* and f abelian, we computed that as a representation 

Lz,) = dim(r)(L*(C, w) 8 Cl). (3.8) 



D. Pickrell/Journal of Geometry and Physics 19 (1996) 315-367 347 

If the surface C is closed, and t is simple, then it is tempting to conjecture that the unitary 
representation 

is irreducible, but proving something like this will apparently require completely novel 
techniques (see [Ch] in the abelian case). 

3.2. A conjectural characterization of (n* u”,w, ) 

Given a reduction PI c P, there is a natural map 

Gluons( PI) -+ Gluons(P). 

This is a source of invariant measures for SDif.f(C) acting on Gluons( P). 

(3.10) 

Conjecture 3.1. Suppose that C is closed. Then for each A > 0. the invariunt measure 
n,vp, is ergodic with respect to the action (3.2) of SDif,f(Z). Conversely, suppose that 
,u is ajnite SDiff (C)-invariant measure on Gluons(for some class Cp”). Therl 

hw p = constant * 7t*vyM 

,for some h, and possibly for some reduction qf P. 

A special case of this is the characterization of invariant measures on the moduli space of 
classical solutions, with respect to the mapping class group. The ergodicity of the canonical 
volume element on the moduli space with respect to the mapping class group has been 
checked by Goldman. The basic idea is that the moduli space (minus a set of measure 
zero) is a completely integrable system in a way which is equivariant with respect to a 
large subgroup of the mapping class group. It therefore suffices to prove that this subgroup 
acts ergodically on the fibres of the system, which are generically tori. This is relatively 
straightforward using the Fourier transform. In the case of SU (2), the completely integrable 
system is described in detail in [JW]. 

4. Line bundles on C and explicit evaluation of determinants 

In Section 5 we will take up the question of how to rigorously construct the unitary 
representations of SDiff (C) which we heuristically described in Section 0.2. In this section 
we will mainly address geometric preliminaries. For the purposes of this paper, our main 
goal in this section is to obtain an analytically tractable formula for the zeta function 
determinant which appears as a density in (0.5). This formula is due basically to Polyakov 
and Wiegmann [PW] and Quillen [Q]. 

In Sections 4 and 5, we will assume that .E is closed and oriented, and K is simply 
connected and has a simple Lie algebra. As a consequence any K-bundle on C is trivial. 
We will also normalize the Ad K-invariant inner product so that the invariant form on K, 
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(1/48~*)hc A [tic A eMc1) (4.1) 

is a generator for H3(K, Iz), where 8MC is the Maurer-Cartan form. By slight abuse of 
notation, we will also interpret (4.1) as a left-invariant holomorphic form on G, where (., .) 
is extended complex bilinearly to g. The Killing form of R is the negative of the dual Coxeter 
number times the complex bilinear extension of (., e). 

4. I. Line bundles on ($0; theoretical description 

In this subsection we assume only that .Z is closed and oriented. Given our assumptions 
on K, there is a single generator for H*(C,o, Z), where this must be interpreted as IC,I - 
equivariant cohomology, since C,o is not a manifold (see Section 2 of [AB]). The goal of 
this subsection is to recall Mickelsson’s theoretical description of the corresponding line 
bundle C. 

The line bundle C can be realized as a quotient of the trivial line bundle 

d,o x @ * d,o (4.2) 

by an explicit action of the gauge group &I. Following Mickelsson [Mi], we define a 
1 -cocycle 

(4.3) 

Ok, A) = & I s (A A g-’ dg) + WZW(g) , 
c 1 

WZW(g) = $ 
s 

(g-l dg A [g-‘dg A g-‘dg]), 

B 

where B is any oriented 3-manifold with a B = C, 

(4.4) 

(4.5) 

ag = g, and S E MapConW’/z(B, K) (4.6) 

(the integral in (4.5) makes sense because g E W 3/2) To see that the extension S of g E Ic, I . 
exists, it suffices to check that the boundary map of Banach Lie groups 

8 : Mapco,ww(B, K) + A4apconwl (C, K) (4.7) 

is surjective, because C’ c Co f’ W’. Since the target group in (4.7) is connected, it 
suffices to check that the differential is surjective, and this follows from standard Sobolev 
space theory (see also Remark 4.1(4)). 

It is straightforward to check that 0 defined by (4.4) is a continuous cocycle, i.e. 

O(gh, A) = O(g, hAh-’ - (dh)h-‘) + O(h, A). (4.8) 
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(see Remark 4.1(2)). Thus K: acts equivariantly on the trivial bundle d,o x @ -+ dco by 

g, (A, z) + (gAg_’ - (dg)g-‘. exp(2niOtg. A))z); (4.9) 

sections of the quotient bundle C -+ C,O are functions o : Act, + C satisfying 

a&W - (dg)g-‘) = exp(2rri@(g, A))a(A). (4.10) 

Remarks 4.1. 
(1) It appears that the natural domain of the Mickelsson cocycle is IC,I x dwo, but estab- 

lishing this would require far more effort. The main technical problem is to show that 
the boundary map (4.7) remains surjective in the absence of continuity. 

(2) For maps g which are sufficiently smooth, the cocycle (4.4) can also be written in the 
form 

O(g, A) = C&i) - CS(&ig-’ - (dg)i-‘), (4.1 1) 

where g and A are extensions of g and A to a bounding 3-manifold B as above, and 
C’S denotes the Chem-Simons functional 

cs(~)=& ((AAF)-~(AA[AAA])) 
s 

(4.12) 

B 

(essentially as in [RSW]). This is the most transparent way to check that (4.4) is a 
cocycle. But from this expression, which involves curvature, it is not as clear that (I is 
defined for continuous connections. 

(3) This construction is natural, in the sense that there is an explicit action 

oi.ff(C) x (C + C,o> : 4. [A. zl + [&A, zl. (4.13) 

This is well defined because 

@(c&g, &A) = @(g, A) (4.14) 

for any 4 E Auf(P). It is this natural unitary action which suggests that there should be 
a unitary representation of SDiff(C) on the L*-sections of this bundle, as described 
in the introduction. 

(4) The WZW term can be defined via a local expression, and for complex gauge trans- 
formations. To explain this, we first recall that if Sz is a form on a manifold, and $J a 
one-parameter family of diffeomorphisms, then 

${4*$2) = d(4*($R)) + $*{+dR). (4.15) 

If g = e’c E kfap,~,~~(C, G), then 
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$WZW(g) = -A s $i*(‘%K A [&4CAMCl) 

B 

= --k s g*(&~~(g), [~MC A @MC]) = s (6, g*dQ) 
c c 

= /(d< A g-‘dg) = 1 (dt A (’ - ‘;;($ d’)) (rdc)). (4.16) 

z 

where the second equality uses (4. IS), the third uses the Maurer-Cartan equation, and the 
fifth uses the standard expression for the differential of the exponential map in terms of the 
Todd series. Upon integrating it follows that 

WZW(e5) = s (dt A F(a d4)(dt)), (4.17) 

where F(h) = h - sinh(h)/h*; in particular WZW(ee) is an entire function of [ E 

Mapwl@(C, 0). 
The main shortcoming of (4.17) is that it fails to indicate why the WZW term is well- 

defined mod Z as a function of g. 

4.2. Quillen ‘s analytic realization of C 

To write down an explicit section, we need to find a more concrete model for the hermitian 
line bundle C --+ C,O. This is done using Quillen’s determinant line construction [Q], which 
depends upon the choice of a spin structure. There are two main points to be made in this 
subsection and the next. The first is that Quillen’s determinant line can be explicitly identified 
with L (so that in particular Quillen’s construction can be extended to continuous potentials), 
and the other is that determinants in two dimensions can be computed explicitly, at least in 
gauge directions. 

In this subsection we fix a Riemannian spin structure for C. We also fix a nontrivial 
holomorphic representation G + GL(V), and a unitary structure on V such that K + 
U(V). We then have (x, y) = -mtrv(xy), for x, y E B, for some positive integer m. 

There is a linear isomorphism 

d,o = Q;,(Z f) + d;; = @;(C, g): A -+ a = (A’)‘*‘, 
A = a -a*. 

(4.18) 

Via this isomorphism, the gauge action by K on unitary connections extends to a holomor- 
phic gauge action by G, the complex gauge group, on (0,l) forms, 

g . a = gag-’ - (jg)g-‘. (4.19) 

Now suppose that a E A($. The coupled operator 2, = 8 + a, acting on sections of 

K ‘I* @ V (where K ‘/* is the holomorphic square root of the canonical bundle determined 
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by the spin structure), can be interpreted as a Fredholm operator, and it has index zero. For 
3 defines an index zero Fredholm operator of Hilbert spaces 

a : n”w, (K”2 8 V) -+ L?$(# @ V), (4.20) 

and a defines a compact operator between these spaces, because the inclusion of W’ into 
W” is compact, and a is bounded as an operator on W”-spaces. Hence 3 + a is a compact 
perturbation of 3, viewed as a Fredholm operator. 

The pullback of the determinant bundle on Fredholm operators gives a concrete realization 
of a power of the line bundle C. Note that via the identification (4.18), Ace inherits a complex 
structure, and C is holomorphic. We will denote the pullback of the canonical section by 
det 3. 

Our next task is to check that the Quillen metric extends to the determinant line over 
continuous potentials. The obvious approach would be to directly extend Quillen’s method 
to continuous potentials. We have not succeeded in determining whether this direct approach 
is feasible, but we would like to prove a partial result in this direction. 

Suppose that a is a continuous potential as above, and let 

H,, = (a + a)*@ + a). (4.21) 

This operator can be interpreted as a self-adjoint operator with domain 

D(H,) = (V E L?;, = ;n@ + a): (a + a)u E sz$ = D((3 + a)*)). (4.22) 

To verify this, and to effectively work with this operator, it is convenient to introduce the 
associated quadratic form 

(4.23) 

(note that the domain of Qa does not depend upon a). To prove that 3 +a with domain flk, 

is closed as an unbounded operator from “Lo to L2$, and hence that H, is self-adjoint, 

we must verify that L$,, is a Hilbert space with respect to the norm 

(4.24) 

i.e. we must check that this norm is equivalent to the W1 -norm, the norm (4.24) with a = 0 
(see Proposition 2.2 and Theorem 2.3 of [Faris]). This is easy, using the assumption that a 
is continuous (hence bounded): 

Qa(v) •k Iv\* = Qo(v) + 2[We($u, av) + (a,l* 5 2(Qo(v) + luvl*), (4.25) 

and similarly 

Qo(v) + lul* i 2(Q,(u) + ]a~]*). (4.26) 
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Proposition 4.2. Suppose that a E did. 
(1) The operator H, has discrete spectrum, and there is a nonzero constant c, independent 

of a, such that 

lim(hj/j) = c, 

where the eigenvalues h 1 (Hi) 5 )\2 ( Ha) 5 . . . are counted according to multiplicity. 
(2) Thefunction h,(t) = trace(e-‘no) has theproperty 

Pa(t) 7 &CC--I + cot)1 = 0(t-‘i2) as t 4 0, 

where C-I = t-k(V) * Area(E), and cry = Ark(V) *genus(C). 

ProojI The resolvent (Ha - A)-’ is a compact operator on S$,,, whenever A 4 spec(Ha). 

For the resolvent defines a bounded operator 

D;o + D(K), (4.27) 

and D(H,) is compactly embedded in W”. In particular the spectrum of Ha is discrete. 
Now consider the spectral function of H,, 

Na(k’)= #(hj: kj 5 A*] 

= supVim( L c Q”,, , Qa(u) 5 h21v&, u E L}. (4.28) 

If we are given a subspace L such that Qu( V) 5 A* ) I,Z I2 on L, then 

I($ + a)u12 = lau12 + 2Re(au, au) + lau12 5 (h2 + 2hlal, + lal~)lu12; 

hence Qa(u) i (A + lalm)*lu/* on L. This implies that 

No@‘) I N,(O, + laM2), (4.29) 

and similarly 

In particular it follows that 

(4.30) 

(4.3 1) 

as h + 00 (the latter limit exists), and this is equivalent to Proposition 4.2( 1) with c-’ = 
lim(N,(h)/k) (see Proposition 13.1 and Theorem 15.2 of [Sh]). 

For par1 (2) of Proposition 4.2, we begin by noting that since 2 has index zero on K ‘12, 

ho(t) = irk(V) * trace(e-‘“) = (l/Srrt)(c_( + cot) + o(t), (4.32) 

where here A is the Laplacian for K ‘I*, and only the o(t)-term depends upon the metric. To 
prove Proposition 4.2(2), it suffices to show that 

Iha - ho(t)1 = O(t-1’2), as t -+ 0, (4.33) 
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and we can choose any metric we like to prove this. In particular we can choose the metric 
such that No(h) - A is bounded, hence that 

No((h + lalcA2) - No(h2) 5 oh + B. (4.34) 

where a and /I are constants. Now 

00 ix 

h,(r) = 
s 

e-” dN,(h) = t 
s 

N,(h)e-” dh. (4.35) 

0 0 

Therefore using (4.30) and (4.34) 

h,(t) - ho(r) i r s Wo((fi + bLd2> - NoQ-))e-‘* dh 
0 

with a similar lower bound. This proves (2). 

Let 

00 

h,(t)t’-’ dt. 

(4.36) 

0 

(4.37) 

By Proposition 4.2( 1) it follows that {a is a holomorphic function in the right half plane 
([We(z) > 11. By a standard argument, using Proposition 4.2(2), Ca has a meromorphic 
extension to {[We(z) > i} with a single simple pole at z = 1; explicitly, 

I 

s 
(h,(t) - &q-l - cO))t--’ dt 

0 

(4.38) 

Ifwecouldimprove theerrorterminProposition4.2(2)fromO(t-’/2) toO((log(t-I))-J’). 
for some p > 2, then we could assert that [L(O), extends continuously to continuous po- 
tentials, and this would imply the extension of Quillen’s metric that we alluded to earlier. 
Instead we will have to resort to other methods. 

One approach, not so useful for our purposes, is purely abstract. In [Q] Quillen proved 
that the curvature of the determinant line, equipped with Quillen metric, is given by 

(4.39) 
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where 

(4.40) 

Since the two form (4.39) is defined over continuous potentials, it follows by abstract 
theory that there is an essentially unique gauge-invariant hermitian structure over continuous 
potentials such that the corresponding hermitian holomorphic connection has curvature 
(4.39); since the restriction to smooth potentials must agree with Quillen’s metric, this 
implies that Quillen’s metric has a continuous extension. 

A more concrete approach is to explicitly identify Det 3 with C, as we will now do. Let 
7 denote the trivial holomorphic line bundle over $‘i, with nontrivial hermitian metric 
determined by 

Ill!+ = ePq. (4.41) 

As observed by Quillen, there is an essentially unique unit length holomorphic section S 
of 7 8 Det 2, and in terms of this trivialization, we can define a holomorphic function of 
potentials a by 

1 @ddeta 
det(&; 30) = 6 

Proposition 4.3. Sending eCmq/2@8 E fi’(‘T* 878 Det 8) to 1 E 6?O(d,o x C) induces 
isomorphisms of hermitian line bundles 

Det 3 -+ A:: --f d,o XC 

4 4 
Det a/K: -+ d:d/K,, + LB”’ + C,O 

In particular the canonical section det 8 is mapped to the function 

o : AC0 + @: A -+ e-(‘/2)mq(a)det(&; $0). 

Pro05 We need to check that the K-invariant sections of Det 8 are mapped to functions that 
transform according to the Mickelsson cocycle. It suffices to check this for the canonical 
section. This follows rather directly from the calculations in [Q], as we will now explain. 

Suppose that a = a(w) is a holomorphic one-parameter family of smooth potentials, 
where 2, is always invertible. In [Q] Quillen calculated that 

&logdet~/8,~2=tr (G - Go)~ 
> 

(4.43) 

where 
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.I(u)[~~ = lim (G(z, z’) - Gn(z, z’)) E fii3’(End(V)). 
:‘I’ 

355 

(4.44) 

Here G is the Green’s function for 8, and Gn is a parametrix defined explicitly near the 
diagonal by 

Go(z, z’ ) = & dz’&r(log(r2(z, z’)))F(z, z’), (4.45) 

where r2 is the geodesic distance and F is parallel translation from the fiber of K '/' @$ V at 
z’ to the fiber at z. 

Our first task is to determine the density J(a). Since G is a Green’s function and GO is 
given explicitly, it is easy to find an equation satisfied by J. That is the content of Lemma 
4.4. 

Let V denote the unique unitary connection determined by 8, (where ~‘1~ @ V has the 
product hermitian structure). In terms of a local coordinate z for C and a holomorphic frame 
for K’i2 QD V, we have 

ds = p(dzl, V=a+edz+$, (4.46) 

and the Taylor series expansion 

F(z.z’) = i - @Z')(Z - Z')i- ;(8(z')2 - a,d + @(Z') - i)a,t(lOg P))(z - L’? 

-i(a,(e)lz - z’12 + 0(lz - ~'1~). (4.47) 

To derive this (supposing for simplicity that z’ = 0), note that if z(r) is a geodesic, then z(f) 
satisfies the geodesic equation 

G + aZ(lOg ~~)(i)~ = 0 ., (4.48) 

and F(z(t)), parallel translation along z(t), satisfies 

(d/dt)F(z(t)) + e(z(t))i(t) = 0. (4.49) 

This implies that 

F(z(t)) = 1 - e(O)i(O)t + ;(e(0)2i(O>2 - (d~(i(O))i(O) + ti(0)W)I)t2 + o(t2) 

= i - e(o)i(o)t + ; ((~(0)~ - (a,@) - a; i0g p2)i(oj2 

-(a,H)ii(o)12) t2 + 0(t2). (4.50) 

It is straightforward to plug the expansion 

z(f) = i(O)t - &(log p)i(o)2t2 + o(t2) (4.51) 

into (4.49) and check that the result agrees with (4.47). This implies the validity of (4.47). 

Lemma 4.4. Let f2 = V2 E Q’3’(EndV), the curvature of (K’/2 @ V, V). Then 

a,J(u) + [a A J(~)I = &52. 
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Pro08 In terms of the local parameter z and the holomorphic frame above, the equation 
a, o G = 1 and the transpose of the equation G o 3, = 1 yield the local formulas 

E&G(z, z’) = S(z - z’), -+G(z, z’) = 6(z - z’), (4.52) 

respectively. Here we are using G to denote both the inverse of 3, and its local representation 
in our holomorphic frame; we will do the same with Go. Using (4.47) we also have 

&Go(z, z’) = 6(z - z’) + 1 
1 

-E$F(z, z’) 
27r 2, - z’ 

= S(z - z’) + &.(-&H) + o(]z - z’l). (4.53) 

Similarly, 

+Gu(z, z’) = -S(z - z’) + (i/2rr)($a$) + o(lz - ~‘1). 

It follows from these calculations that 

(4.54) 

(3~ + $)(G - Go)(z, z’) = (i/4n){8@ + $01 + o(lz - z’l). 

When we take the limit z - z’ -+ 0, we obtain Lemma 4.4. 

(4.55) 

0 

We now complete the proof of Proposition 4.3. 
Given .$ E fi’(C, t), let k = e’c E K and g = e l”c E G, where e (resp. w) is a real (resp. 

complex) parameter. Assume that 2, is invertible. Then 

; lfCO l”gte- mq(k’a)‘2 det (&.a, $0)) 

where the first step uses the fact that Quillen’s determinant is a holomorphic function of 
a, and the last step uses the fact that ([a, (1 A a*) is real, because c E f, and Quillen’s 
calculation of the w variation of [’ (4.43). 

In Lemma 4.4 we calculated a, J in terms of curvature, which determines J modulo the 
kernel of a,, acting on &?‘,‘(End( V)). In the present calculation we can ignore both this 
ambiguity and the scalar part of J, since we are coupling this to the traceless operator a&. 
Recalling that rrv = -m(., .) on g, we now see that (4.56) equals 

=$I (at A a*) - g s (8,~ A a*) 

+ J (~ca,)-‘(au - au* - [a* A a]) A a,e) 
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= $Ln s ($6 A a*) + E . s (au A 4) = Erwe s (a A a(f). (4.57) 

This calculation implies that ~7 satisfies the equivariance condition 

a(k a) = exp(2rrimO(k, A))o(u). (4.58) 

This is so because if we fix A, then (4.57) shows that both sides of (4.58), as functions of 
k, have the same derivative at the identity (note that the derivative of the WZ W term at the 
identity is zero). By dividing by a(u), since both sides of (4.58) are then I-cocycles, this 
implies equality for all k E K. 0 

4.3. On calculating Quillen ‘s determinant and detS 18 I2 

In the proof of Proposition 4.3 we calculated the effect of a unitary gauge transformation 
ona.Letg =ewt, where c is now allowed to have values in n. The same calculation shows 
that 

,;\ 1.,=” log(det&.a; 30)) = & IuJ=O(m~(g . a) - t’(O)) - 

im 
=- 

2Tr s 
(a A 30. 

This determines Quillen’s determinant function in gauge directions. 

Proposition 4.5. We have 

det($.,; $0) = exp(2nim@(g, u))det(&; 80) 

.for all g E 6, where 

@(g, a) = O(g, a) + L(g. a), 

h(g, a) = & 
s 

(g . a A (ag)g-‘). 

Prooj We first observe that 

(4.59) 

(4.60) 

which is the same as the logarithmic derivative in (4.59). It then remains to check that @ is 
a C/Z-valued 1 -cocycle for the action of B on A:,;. Since 0 is a @/iZ-valued 1 cocycle for 

the action of G on complex 1 -forms (i.e. (3.7) is valid for g, h and A complex), this reduces 
to checking that 

h(gh, a) = h(g, huh-’ - (ah)h-‘) + h(h, a) + & 
.I 

(@h)h-’ A g-‘i!(q), 

(4.61) 

and this is straightforward. 0 
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On the Riemann sphere this result in a sense explicitly determines Quillen’s determinant 
function. For in the case of the sphere, a generic a will be in the g-orbit of 0. It follows 
from Proposition 4.5 that 

det($; $0) = exp(2niS(g)), (4.62) 

S(g) = @(g, 4 (g-lag A g-lag) + WZW(g) (4.63) 

where a = g . 0. This is essentially the formula written down by Polyakov and Wiegmann 
in [PW] (which is remarkable, because the meaning of the determinant in their work was 
not specified). Note that using Remark 4.1(4), it is easy to write down the Taylor series 
expansion for S, hence the series for Quillen’s determinant. 

The functional S (which is closely related to the Wess-Zumino-Novikov-Witten action) 
satisfies the equation 

S(gh) = S(g) + S(h) - $ 
s 

((iJh)K A g-‘(ag)). (4.64) 

Let E denote the complexification of the standard energy function 

E : A4q+1 (E, G) + a=: g + ; /(g-l dg A *g-l dg). (4.65) 

Note that & is positive on K and negative on maps with values in exp(p), p = if. Note also 
that WZ W is unambiguously defined as a iR-valued function on exp(p) by (4.17). 

Proposition 4.6. Zf a = g . 0 = g$(g-I), then 

Ia( = exp(4 rrmiS(S2)) = exp ((m/2n)(E(f2) + iWZW(G?))), 

where R = g*g. 

Proo$ It is easy to check that 

WZW(g*) = -WZW(g)*mod8rr22, 
S(g*) = -S(g)* mod??. 

Hence (4.6.4) implies that 

S(g*g) = 2i Zm S(g) - 5 
s 

((Jg)g-’ A g*-lag*) 

(4.66) 

Since 

= 2i Im S(g) - & 
s 

(a A a*) + 2niS(g) , (4.68) 

(4.67) implies Proposition 4.6. 0 
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Now suppose that E is a closed Riemann surface of positive genus. It is no longer the case 
that the complex gauge orbit of a = 0 is dense; instead one must consider all connections 
having curvature zero. For a continuous connection A, curvature FA is not defined. However, 
meaning can be attached to the equation FA = 0; it means that for the corresponding gluon 
(or holonomy function) hA, the value of h: depends only upon the homotopy class of C. 

There is a natural injective map 

GUI XK~, (A E Ace: FA = 0) + (A;;): (g,Ao) + A =g.ao: (4.69) 

the image of this map is all semistable potentials; one can consult [AB] for the definition 
of semistable in this context, but for our purposes it suffices to take the image of (4.69) as 
the definition. Because of the injectivity of (4.69) the set of semistable potentials has the 
structure of a principal fibre bundle with fiber GC I and base H’(C, K); the projection to 
the base is given by 

(g, Ao) -+ hAo. (4.70) 

In this paper we will not take up the question of how to compute Quillen’s determinant 
in full generality; this involves finding explicit local cross-sections for the projection 

(&Ed: FA~=O)+ H’(C.K). (4.71) 

and some further considerations about the density J(a) of the preceding subsection. In this 
paper we are more interested in ]o (A) 1; because the quantity ]D (Ao) 1 is gauge invariant with 
respect to unitary transformations, we have the following generalization of Proposition 4.6. 

Proposition 4.7. !f a = g . a~, then 

Ia( = exp ((m/h)(E(R) + iWZW(C) + P(SZ,czo)))ln(A~)~. 

where 

P(f2,ao) = i 
s 

(L2.aur\ag* -RaoR-’ A (n-’ .a~)*), 

S2 = g*g and Ia( descendstodejine asmoothfunction on themodulispace H’ (C. K). 

The proof of this is a straightforward calculation along the same lines as Proposition 4.6. 

5. Line bundles and quantization, probabilistic considerations 

In the previous section we found relatively explicit formulas for detF 13 I2 (or at least we 
reduced the problem of finding such formulas to finite-dimensional considerations). In this 
section we will discuss the problem of coupling this function to the Yang-Mills measure, 
i.e. making sense of the measure given by the formal expression (0.4). 
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5.1. Heuristics 

Consider first the case of the sphere. Using Proposition 4.6 we can rewrite the heuristic 
expression (0.4) as 

(l/E) exp(E(f2) + iWZW(fi)) dn,vyM(A), 

where 

(5.1) 

Q = g*g, -(&)g-’ = a, A = a -a*. (5.2) 

There is a simple heuristic expression for the measure rr*vy~ in terms of the coordinate 
0, because 

(F,L, A *FA) = (a(&(afl)) A *j(n-‘(an))). (5.3) 

To see this, use the relation 

&(a - a*)g + g-’ dg = Q-‘X2. (5.4) 

This implies that 

g-‘FAg = $(&an), (5.5) 

which in turn implies (5.3). The relation (5.4) is easy to check directly; it also follows 
abstractly from the fact that d + A is the coordinate expression for the unique holomorphic 
unitary connection in the bundle C x V + C, where the unitary structure is constant, and 
the holomorphic structure is gotten by declaring eg to be a holomorphic frame, where E 
denotes a constant frame; in the holomorphic frame cg the connection is given by 

a + 52-‘a52 + a. (5.6) 

Thus on a heuristic level, in terms of the correspondence (5.2) 

durM(A) = (l/E)exp(-:(8(52-‘(aQ)) A *a(D-‘(JS2))))Dg, (5.7) 

dn,vrM([A]) = (l/E)exp(-~(~(~n-‘(a52)) A *a(Q-‘@Q))))DQ, (5.8) 

where Dg denotes the fictitious Haar measure for B, and Vs2 the invariant measure on 

Map(C, exp(u)). 
Now suppose that E is a closed Riemannian surface of positive genus. Recall that there 

is a fibration 

Gc’ + (dco)ss = Gc I XK [A E dco: FA = 0) 

J 
H’(Z K) 

(5.9) 

To find the corresponding disintegration of UYM (on a heuristic level), we compute the 
Yang-Mills functional for 

a = g .a(), (5.10) 
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where g E G and A0 has curvature zero. A (rather lengthy) calculation shows that 

g-‘&g = g-‘(a(g . ao) - a(@ . ao)“) - a Aa* - a* A a)g 

= cq-(n-l..“)* (5.11) 

One therefore expects that 

where p is a density and dP denotes the canonical symplectic volume element on moduli 
space. 

To have a minimal understanding of these measures, say in the case of S2, we should be 
able to do all of the following. First we should be able to show that the formal expression 
(5.8) does indeed define a measure on Mapco(C, exp(p)). Secondly, we should be able to 
show that a probabilistic extension of the correspondence 

hA + [A] t l-2 (5.13) 

defines an isomorphism which identifies rrl;vy~ and the measure corresponding to the 
formal expression (5.8). Finally we should be able to show that the formal expression (5. I ) 
can be interpreted as a measure which is absolutely continuous with respect to the image 
of rr*uy~ under the correspondence (5.13). 

5.2. The ahelian analogue 

To gain a feeling for the analytical properties of the measures represented by the formal 
expressions (5.1) and (5.8), it is instructive to consider the case f = iR; in this case both 
formal expressions represent Gaussian measures. We will write down the finite-dimensional 
distributions, with respect to evaluation at points, and check that (5.1) is absolutely contin- 
uous with respect to (5.8). 

Let if = log 6~‘. Then (5.8) is essentially equivalent to 

(5.14) 

where n denotes the scalar Laplace-Beltrami operator. This formal expression (5.14) repre- 
sents the Gaussian measure associated to the Hilbert space Wi=,, real-valued W*-functions 
on C with expectation zero, where the inner product is given by 

.f . g = / *(AfAg). (5.15) 

It is well known that this measure is supported on continuous functions with expectation 
zero. 
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Now suppose that n denotes a configuration on Z, i.e. a finite subset of _Z. Our task is 
to compute the projection of the Gaussian with respect to the evaluation map 

eval” : fEC(C,R): f=O s I + KP: f + (f(q))qd7. (5.16) 

This image measure is given by 

(l/E) exp(-iC-‘q’ .i) n dqj, (5.17) 

where C is the covariance matrix. Given a point q E C, the evaluation function is represented 

by a function q = nq E WizO, in the sense that 

f(s) = s *(AfArl) 

for all f E Wi=,. We then have 

(5.18) 

cq,, = vq . ‘Ip = s *(4qArlp). 
c 

Eq. (5.18) says that the function h = Aq satisfies the distributional equation 

(5.19) 

A(h) = 6, + constant. (5.20) 

This equation and the constraint 1 *h = 0 uniquely determine h. 

If C is hyperbolic, then there exists a Green’s function with singularity at q, G,. We have 

h = G, - 
s 

*G4, 

and the constant in (5.20) is zero. Hence in these cases 

(5.21) 

C 4-P = s *(G4Gp)- (S*Gq) (j-*6+ (5.22) 

Suppose that C is the sphere with the standard metric. In terms of the stereographic 
coordinate z = r exp(io), the metric and Laplacian are given by 

4(1 + r2)-21dz12, 44,~ = (1 + r2)2AR~. (5.23) 

TO solve Eq. (5.20), we take q to correspond to z = 0. Let h = A,z~; h is a function of 
r alone. Eq. (5.20) is equivalent to 

(1 + r2)2(@ + (l/r)&)h = 460 + constanr, 

where h must have a limit as r + CO, and 1 *h = 0. We find that 

h(r) = (1/4rr)(-ln(r2) + ln(l + r2)) - c. 

[One easily checks that 

(5.24) 

(5.25) 

(1 + i-2)2(&, + (l/r>i3,)ln(l + r2) = 4.1 
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In intrinsic geometric terms, this means that 

qy(p) = -(1/4rr)ln(sin2 id), (5.26) 

where d is the distance between p and q. 
In stereographic coordinates the distance between two points is given by 

z-w 
d(z. w) = 2arctan ~ . 

! I 1 +zw 
(5.27) 

Given q1 and 92, 

“91.42 = (4rrp 
L//In(!$!?)]n( R2+r2’r2R2+’ ) 4r 

R2 + r2 - 2rR cos(0) (1 + r2)? 
drd$, 

(5.28) 

In the case of the standard torus C = R2/(2nZ)2. with q = 0 E C, we have 

h = c ieik’x 
k#O Ikl 

and 

“yI.92 = co.9, -qz = 

(5.29) 

(5.30) 

The coupled measure (5.1) (where we have inserted a coupling parameter) is given for- 
mally by the expression 

(5.3 I) 

One can make sense of this as the Gaussian measure for the space Wg=,, where the inner 
product is now given by 

f . R = /- *WI2 + BIW-12>. (5.32) 

c 

Let h = AQ, as before. Then the equation that we must solve is 

A(h) + j9h = 6, + constanr. 

For /? r 0, there is a unique function Gt such that 

(A + ,9)Gt = 6,. 

Therefore 

(5.33) 

(5.34) 

,,=A-‘(G{-/xG{) 
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(where we have restricted A to the orthogonal complement of the constants). Hence the 
covariance matrix is given by 

C 9.p = r79 . vp = 
s 

*(GtG;)-(/*G$r)(/*G;)+~/d%+*dlip. (5.36) 

We now check absolute continuity. 
Fix an orthononnal basis of real eigenfunctions E, for A on Z. Let h, denote the eigen- 

values, and fn the coefficients of f with respect to this basis. The measure represented by 
(5.8) is equal to 

The coupled measure (5.1) is equal to the product measure 

(5.37) 

(5.38) 

Since the f,, are independent, it is straightforward to check that these measures are equiva- 
lent. In fact the Radon-Nikodym derivative of (5.38) with respect to (5.37) equals 

1 I-I ’ (l+r) 
n 

ti2e-pi2i..} exp [-/I/2 Ch,(f: - E(f,Z))] (5.39) 

where E(.) denotes expectation with respect to (5.37). This makes sense as a random 
variable with respect to (5.37) because (1) the existence of the limit n-l& -+ constant 

implies that the product in (5.39) converges and; (2) the random variables A,, (f,’ - E(f:)) 
are independent, have mean zero, and the sum of their L2-norms (with respect to (5.39)) is 
(easily checked to be) finite. 

5.3. The Yang-Mills measure in terms of f2 

How do we make sense of the measure (5.8)? The basic problem is to characterize the 
finite-dimensional distributions with respect to evaluation. This is of broad interest for the 
following reason. We can write 

a(Q-ti3Q) = d(*(Q-’ dR)) - $$a-’ da A OR-’ dfi]. 

The term *d(*(D-’ dR)) is essentially the gradient of the energy function E at $2. So if 
we ignore the bracket, the most important part of the measure is 

exp(-iV& . V&)DQ 

This formal expression makes sense for M = exp(p) (as a Riemannian symmetric space) 
replaced by a general Riemannian manifold M. The solvability of Yang-Mills suggests that 
it may be possible to characterize the distributions of this more general object. 
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Appendix A. The space of coordinate based gluons for S3 

In dimension 3 the Yang-Mills functional involves the entire metric, and in dimension 4 
it depends upon the conformal class of the metric. For the invariant metrics on the 3 and 4 
spheres, it seems plausible that the parametrization of based gluons using paths in spherical 
coordinates will be useful in understanding the Feynmann measure. Since the arguments in 
Section 1.3 extend directly to these cases, we will state the results. 

The 3-Sphere. We consider spherical coordinates for the 3-sphere. This is the parame- 
terization 

(@I,&, 43) + (cos(41), sin(4l)(cos(@z), sin(42)(cos(43), W43)))). (A.1) 

whereO<& <J~,O<C#Q<I~,O<& <2rr.Themetricisgivenby 

(ds)2 = (d$t)2 + sin2(&)((d$2)2 + sin2(r#q)(d&)2}. (A.2) 

Now suppose that g is a gluon potential for the trivial bundle S3 x K. Define 

(A.3) 

Proposition A.l. The map 

g -+ (8’3 g2, g3) 

defines an isomorphism 

Gluons(COOrd’ -+ 0; K x Path;,’ (Pathg( Path;;* K)) 

~Path~,‘(Pathlp;‘(Path~~*K)). 

To parameterize the space of coordinate based gluons, given a gluon potential g, define 

J’($‘2, 43) = g’(l, 42, @3)-’ 0 g’(l, 0, o>, 

h~(~,,~2,~3)=g1(~1,~2,~3)-’ og~(~~,~2,~3)0~~(~,,0,0), 
(A.4) 

where $ = 2, 3. 

Proposition A.2. The map 

[g] -+ h = (h2, h3) 

defines an isomorphism 
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(coord) 
GIUonSbased + 

I 
h E Path;,* Path;f Path;;* K x Path;,* Path: Path;,*K : 

h21$,=, = h3/+,=, = y E P-component c Map(S2, K)/K) 

This is a$bre bundle with contractible fibre and base (a2 K) p. 

The proof is exactly the same as for Proposition 1.7. The extension to higher-dimensional 
spheres is straightforward. 
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